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An investigation is made of the stability of steady rotation of a symmetrical body with a viscous fluid on the
basis of integro-differential equations whose coefficients are determined by solving boundary-value problems
of hydromechanics of an ideal fluid that are dependent on the geometry of a cavity. The perturbation method
is employed to solve the problem on the stability of body rotation relative to the axis with the largest moment
of inertia and on the instability relative to the axis with the smallest moment of inertia. A similar problem for
a body with an ideal fluid is studied in [F. L. Chernous’ko, Prikl. Mat. Mekh., 31, Issue 3, 414–432 (1961);
S. L. Sobolev, Prikl. Mekh. Tekh. Fiz., No. 3, 3–37 (1960); A. Yu. Ishlinskii and M. E. Temchenko, Prikl.
Mekh. Tekh. Fiz., No. 3, 163–179 (1960)], while with a viscous fluid, it is studied in [N. N. Moiseev and V.
V. Rumyantsev, Dynamics of a Body with Cavities Filled by Fluid [in Russian], Moscow (1965)], where con-
sideration has been given to the problem on two-dimensional oscillations of a rectangular vessel under the
action of the restoring force of an elastic spring.

In describing the perturbed motion of the body with a cavity filled with a viscous fluid, determination is
made at first of the velocity field of the ideal fluid filling entirely the cavity of the rigid body. In so doing, a linear
problem for eigenvalues is solved. It characterizes natural oscillations of the fluid in a fixed vessel and depends on the
geometry of a cavity. Knowing the Zhukovskii potentials and natural oscillations of the fluid, one can determine the
coefficients characterizing the inertia coupling of the body and fluid in the cavity as the body moves.

The motion of the entire system is described by an infinite system of integro-differential equations. We will
reduce this system in accordance with [6].

Equations of the Perturbed Motion of a Rigid Body with a Fluid. We will consider the perturbed, relative
to the steady rotation, motion of a dynamically symmetrical body with an axisymmetrical cavity entirely filled with a
low-viscosity incompressible fluid. The angular velocity of the body is presented as ω = ω0 + Ω = ω0k + Ω. Here,
ω0 = ω0k is the angular velocity of steady rotation of the body directed along the unit vector k of the Ox3-axis rigidly
connected to the body of the coordinate system Ox1x2x3, and Ω = (Ω1, Ω2, 0) is the angular velocity of the body in
perturbed motion that represents the value of the first order of smallness as compared to ω0.

The equations of perturbed motion can be written in the form [6]
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Here, Ω = Ω1 + iΩ2 and A and C are the moments of inertia of the system body + fluid relative to the axis of sym-
metry and transverse axis. In this case, Eq. (1) describes the perturbed rotation of a rigid body with a cavity filled
with a viscous fluid under action of external moments, while Eq. (2) serves for determination of the amplitudes of
fluid oscillations sn(t).

Let us introduce functions ϕn(x, R) satisfying the two-dimensional boundary-value problem:
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The first equation must be satisfied in the meridian section G of the cavity in the plane of cylindrical coordinates
(x, R), and the second equation, at the boundary of this section having a normal ν = (νR, νx); χn = 2ω0

 ⁄ λn. Coefficients
of the equations are expressed in terms of the functions ϕn as follows:
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(4)

αn (t − τ) = An + Bn cos 2ω0 (t − τ) + 2iCn sin 2ω0 (t − τ) ,

βn (t − τ) = 2ω0Bn sin 2ω0 (t − τ) − 4iω0Cn cos 2ω0 (t − τ) ,

where for the cylindrical cavity of radius r0 = 1 and height h in [6] the following coefficients are determined:
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By virtue of the fact that the cross coefficients of inertial couplings αmn, βmn exert a weak influence on the
dynamics of the rotor with a viscous fluid, we can neglect their influence and leave the main terms with m = n. Let
us write the system of Eqs. (1) and (2) for a freely rotating body by setting M = 0:

AΩ
.

 + i (C − A) ω0Ω + 2ρ  ∑ 

n=1

∞

 an (s
.
n − iω0sn) = 0 ,

µn 







s
.
n − iλnsn + √ ν

π
  ∫ 

0

t αn (t − τ) s.n (τ) + βn (t − τ) sn (τ)

√ t − τ
 dτ







 + anΩ

.
 = 0 .

(6)

A study of the stability of the motion described by Eqs. (6) encounters great difficulties since it necessitates
elimination of the parameters sn from the system of the integro-differential equations. This problem is solved in the
next section by the method of perturbation theory.

Perturbation Method. Let us apply the Laplace transformation to Eqs. (6):
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We arrive at

[Ap + i (C − A) ω0] Ω
^

 + 2ρ  ∑ 

n=1

∞

 an (p − iω0) ŝn = 0 ,
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The characteristic equation of system (7) has the form
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We will calculate roots of the function ψ(p) using the perturbation method and restricting ourselves to the lin-
ear, with respect to a small parameter √ν , terms. We assume that
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Bearing in mind that the loss of stability begins at the frequencies close to the partial frequencies of fluid os-
cillations, we will expand a meromorphic function 1 ⁄ ψn(p) into a Laurent series and restrict ourselves to the terms of
the expansion in the neighborhood of the poles, i.e., the zeros of the function ψn(p). Then characteristic equation (7)
acquires the form
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Let us calculate a derivative ψn(pn) by using only terms of order √ν :
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(γ± = 1/√ 2ω0 ± λn). Equation (12) with account for (13) and (14) acquires the form
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Here
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Equation (15) is a generalization of the characteristic equation in [7] to the case of a low viscosity of the
fluid.

In the absence of viscosity (√ν  = 0) in the case of an ellipsoidal cavity, Eq. (15) coincides with the charac-
teristic equations obtained in [2, 3] provided the gravitational force is equal to zero, while in the case of an arbitrary
cavity of rotation it coincides with the equation in [5].

At ν = 0 and with replacement of p = iη, for the steady rotation to be stable all roots η must be real. As nu-
merical analysis shows [7], in a first approximation instead of the infinite sum only the main term (η = 1) can be left.
The equations for the domains of stability satisfy the following equalities:

∆ = C − A = − E1 − (A − 2E1) 
2
χ1

 % 
2
χ1

 √(A − E1) E1
2 − (χ1 − 2)  , (17)

Here, the instability region lies between the curves determined by positive and negative values of the radical. From
expression (17) it follows that rotation of the body is stable at C > A, i.e., when the body rotates about the axis with
the largest moment of inertia.

We will prove that free rotation of the body with an axisymmetrical cavity about the axis of the smallest mo-
ment of inertia (∆ < 0) will always be unstable.

Considering in Eq. (15) at ν = 0 the limiting case ω0 → 0, we can show that the quantity

A
′
 = A −  ∑ 

n=1

∞

 En > 0 (18)

is equal to the moment of inertia of the equivalent rigid body introduced by Zhukovskii [8].

By virtue of the fact that the infinite sum ∑ 
n

 En is limited by the value of the moment of inertia A we can

suppose that infinite system (15) can be reduced. Let us write characteristic equation (15) by leaving a finite number
(N) of terms of an infinite series in it:
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Aη + ∆ − η (η − 1)  ∑ 
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where σn = λn
 ⁄ ω0. In the small neighborhood of the point η = σn, Eq. (19) is equivalent to the quadratic equation
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The quadratic equation has complex roots, which corresponds to unstable rotation of the body if its determi-
nant is negative:
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The equality D = 0, which represents a quadratic equation for σn, gives the intervals of dimensionless natural
frequencies corresponding to unstable rotation. These frequencies lie between roots σn
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The expression under the radical is always positive:
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0 → 1 − 

C
A

 < 1.

Since natural frequencies possess everywhere a dense spectrum in the region σ n  < 1, we can always choose
the actual value of σn in the interval determined by formula (22) with the sufficiently, perhaps, small coefficient En
corresponding to it, in the neighborhood of which Eq. (20) has complex roots at ∆ < 0, which is indicative of the in-
stability of rotation of the body about the axis with the smallest moment of inertia. It is easy to evaluate the imagi-
nary part of root (22) determining the order of intensity of the stability loss of steady rotation (i.e., an increment of
the rotation axis) at a given frequency σn:

Jm η = √− D  ⁄ A .

Substituting the mean frequency from interval (22) into expression (21) for D, we arrive at
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Whence, we obtain the characteristic time of stability loss of the body rotating with the angular velocity ω0:
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Criterion of Stability according to the Linear Approximation. In accordance with the foregoing, we leave
only one term in the infinite sum from Eq. (15) and perform replacements:

p = iη ,   pn = iλn + √ν  δn .

Let us write the characteristic equation in the form
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Aη + (C − A) ω0 − η (η − ω0) 
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We will seek a viscosity correction for the root by the perturbation method. Let η0 be the root of the char-
acteristic equation with the ideal fluid:
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The characteristic equation with a viscous fluid has the form
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We will seek a correction for the root in the form
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For stability of the rotor with a viscous fluid we find p in explicit form:
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Stability of the steady rotation will be provided if the condition Re p < 0 is fulfilled, i.e.,

Re p = √ν  Ξ 



β1 − 

δ11

η0
 − λ1




 < 0 .

The analysis carried out allows us to draw the following conclusions: the presence of viscosity leads, first, to

the fact that natural (partial) frequencies are shifted by a value proportional to √ν , i.e., by √ν  Ξ 



α1 + 

δ12

η0 − λ1




. Sec-

ond, the presence of viscosity leads to a new criterion of stability unlike the ideal fluid where the criterion of stability
is the requirement for the roots of the characteristic equation to be real.

Thus, in some cases the viscosity results in stabilization of the steady rotation (where A is the largest moment
of inertia), while in others it results in the loss of stability (where A is the least moment of inertia).

If we consider the Cauchy problem and choose initial conditions close to rotation about the major or minor
axes of an inertia ellipsoid, then the motion will consist of the uniform rotation about the axis and small oscillations
of this axis.

As for the rate of build-up or attenuation of joint oscillations of the body and fluid, it depends on the mass
ratio of the fluid and body, which coincides with the conclusions of [9].

If the fluid density ρ is sufficiently small, the natural oscillations will quickly attenuate and the motion will
be merely the forced one.

All the quantities characterizing the motion of the body and fluid will depend on time as exp (pt), which has
been considered in the present work in investigating the stability of steady rotation.

NOTATION

sn, amplitude of the nth tone of fluid oscillations; ρ, fluid viscosity; ν, kinematic viscosity of the fluid; an,
µn, coefficients of the inertia couplings; λn, natural frequencies of the fluid oscillations; αn, βn, coefficients of the in-
ertia couplings; αmn, βmn, cross coefficients of the inertial couplings; ϕn and ψn, eigenfunctions and eigenvalues of the
boundary-value problem; i, complex unity; p, parameter of the Laplace transformation; —, derivative with respect to t;
M, moment of external forces; σn, correction for frequency; α~n, β

~
n, coefficients of expansion of the function; Jm η,

increment of the axis of rotation.
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